МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАНОРАЗМЕРНЫХ ПРОСЛОЕК КОБАЛЬТА В ТВЕРДЫХ СПЛАВАХ WC/Co

Заводинский В. Г.

Институт материаловедения ХНЦ ДВО РАН, Хабаровск

УДК 539.3; 539.4

С помощью квантово-механического компьютерного моделирования (теория функционала электронной плотности и метод псевдопотенциала) исследованы механические характеристики наноразмерных прослоек кобальта между кристаллитами карбида вольфрама. Показано, что с уменьшением толщины прослойки кобальта до наномасштабных размеров прочность ее на поперечный разрыв увеличивается вдвое, но с другой стороны, модуль сдвига уменьшается в шесть раз. При этом твердость прослоек может в 3-4 раза превосходить твердость массивного кобальта.

Работа поддержана грантами ДВО РАН 2010-2011 гг.

Ключевые слова: МОДЕЛИРОВАНИЕ ИЗ ПЕРВЫХ ПРИНЦИПОВ; КОБАЛЬТ; КАРБИД ВОЛЬФРАМА; НАНОРАЗМЕРНЫЕ ПРОСЛОЙКИ; ПРОЧНОСТЬ; МОДУЛЬ СДВИГА

1. ВВЕДЕНИЕ

Твердые сплавы на основе карбида вольфрама (кристаллиты WC внутри матрицы Со) широко используются как материал для режущего инструмента. Недавние исследования показывают, что рабочие характеристики твердых сплавов (твердость и прочность) существенно улучшаются при уменьшении размеров кристаллитов до 300-500 нм [1-4]. Однако природа этого эффекта неясна. В том числе неясно, обусловлен ли он одними лишь изменениями свойств кристаллитов карбида вольфрама или в него дает вклад и кобальт, толщина прослоек которого уменьшается даже быстрее, чем размер самих кристаллитов, поскольку соотношение между количеством кобальта и карбида вольфрама технологи обычно сохраняют неизменным. И если размерные эффекты, связанные с переходом от микрокристаллитов WC к нанокристаллитов, изучаются уже достаточно интенсивно, то исследованию свойств слоев кобальта наноразмерных толщин пока еще уделяется недостаточно внимания. В недавней работе [5] показано, что наночастицы карбида вольфрама на субнаноуровне могут обладать как тригональной, так и кубической структурой с чередующимся расположением атомов вольфрама и углерода наподобие кристалла NaCl. При этом обнаружено, что прочность наночастиц в несколько раз превышает прочность массивного материала, а атомы кобальта могут залечивать дефекты наночастиц карбида вольфрама и повышать их твердость. Однако свойства кобальтовых прослоек, заключенных между кристаллитами WC, изучены не были. Данная работа посвящена моделированию наноразмерных слоев кобальта, расположенных между кристаллическими поверхностями кубического WC, и изучению их реакции на различные деформации: растяжение и сдвиг.

2. МЕТОДИКА ИССЛЕДОВАНИЯ

Поскольку малые наночастицы карбида вольфрама обладают структурой типа NaCl (практически в равной степени кубической, либо тригональной [5]) мы для простоты ограничимся рассмотрением границы кобальта с поверхностью (100) кубических кристаллитов WC. В работе [6] исследована энергетика формирования слоев кобальта на поверхности WC(100) и показано, что наиболее выгодным является формирование эпитаксиальных структур, в которых атомы первого слоя кобальта располагаются прямо над атомами углерода, а последующие слои выстроены аналогично слоям гранецентрированной решетки кобальта, однако сжаты в направлении, нормальном к поверхности карбида вольфрама, и растянуты в латеральных направлениях. Из последнего результата можно заключить, что тонкие слои кобальта находятся в напряженном состоянии, происходящем из большого несоответствия геометрических характеристик решеток кубического карбида вольфрама (0.439 нм) и кубического кобальта (0.362 нм). При увеличении толщины кобальтовых слоев напряжения неизбежно возрастают, что должно, при некоторой критической толщине, приводить к возникновению дислокаций несоответствия. Нахождение этой критической толщины представляется довольно сложной задачей, однако, в любом случае, представляется интересным изучить не только механические характеристики эпитаксиальных (бездефектных) прослоек кобальта, но и прослоек, содержащих лислокации.

Все расчеты, описанные в данной статье, проведены с помощью программного пакета FHI96spin, который является модификацией пакета FHI96md [7], и был ранее успешно использован для многих систем, включая систему WC/Co [5, 6] и исследование упругих свойств наночастиц с различными типами межатомных связей [8]. Этот пакет основан на спин-поляризованной теории функционала электронной плотности [9, версии 10]. методе псевдопотенциала [11] и наборе плоских волн. В данной работе использовались псевдопотенциалы углерода и кобальта, построенные с помощью пакета FHI98PP [12] по схеме Труллера-Мартинса [13], однако для вольфрама была применена Хаманна [14]. Все эти потенциалы являются сепарабельными, схема трансферабельными и нормо-сохраняющими. Они проверены на отсутствие так называемых "ложных" состояний (ghost states) и использованы для тестового определения равновесных параметров решетки и объемного модуля упругости. Во всех случаях для учета обменно-корреляционного взаимодействия применялась аппроксимация обобщенных градиентов (generalized gradient approximation) [15] и выполнялась оптимизация атомной геометрии. Равновесные параметры решетки и модули упругости рассчитывались с использованием уравнения состояния Мурнагама [16].

Поскольку несоответствие между параметрами кубических решеток кобальта и карбида вольфрама составляет примерно 20 процентов, для

моделирования использовалась суперячейка с периодом по оси X, равным пяти постоянным решетки карбида вольфрама (5 × 0.438 нм = 2.190 нм), с тем, чтобы в этот же период могли с хорошей точностью уложиться шесть постоянных решетки кобальта (6 × 0.362 нм = 2.172 нм). Такой выбор суперячейки обеспечивал возможность моделирования дислокации несоответствия. Размер суперячейки по оси У равнялся одной постоянной решетки карбида вольфрама (в этом направлении дислокация для простоты не моделировалась). Размер системы WC/Co по оси Z определялся равновесной геометрией системы в этом направлении. В качестве поверхности WC, контактирующей с кобальтом, была взята поверхность (100). Кристаллит WC моделировался пластиной толщиной в четыре атомных слоя. Прослойка кобальта состояла из шести атомных слоев. Дислокация несоответствия (а точнее, ядро дислокации) моделировалась введением дополнительных атомов в два центральных слоя кобальта. Для идеальной эпитаксиальной системы величина толщина прослойки h составила 0.989 нм, а для системы с дислокацией – 1.016 нм. Атомные схемы изучаемых систем изображены на рис. 1.

Рис. 1. Прослойки кобальта между кристаллитами кубического WC с гранями (100). Большие белые кружки – атомы вольфрама, большие черные кружки – атомы углерода. Сплошные малые кружки – атомы кобальта ближнего слоя, пунктирные малые кружки – атомы кобальта дальнего слоя. Серым цветом на правой панели изображены атомы кобальта двух внутренних слоев, в которых латеральная постоянная решетки соответствует ГЦК решетке кобальта. На левой панели все атомы кобальта в латеральных направлениях упорядочены эпитаксиально по отношении к поверхности (100) карбида вольфрама. На правой панели эпитаксиальная упорядоченность нарушена введением дополнительных атомов, необходимых для построения решетки, характерной для кристалла кобальта. На рисунке изображены характерные расстояния между плоскостями (в нанометрах) и величины постоянной решеток WC (0.438 нм) и Co (0.362 нм).

Во всех расчетах использовались энергия обрезания набора плоских волн величиной 680 эВ и 12 точек зоны Бриллюэна, а именно, специальные точки (0.25, 0.25, 0.25) и (0.25, 0.25, 0.25), предложенные для гранецентрированных решеток [17] со схемой Монкхорста (2×2×2) [18]. Самосогласование по энергии происходило с точностью 0.005 эВ/атом.

Для изучения реакции кобальтовой прослойки на деформации растяжения размер системы по оси Z изменялся с шагом 0.0529 нм; на каждом шагу

находилась равновесная геометрия системы и соответствующая ей равновесная полная энергия. При этом только атомам кобальта и атомам граничного слоя карбида вольфрама дозволялось изменять свои расположения, позиции остальных атомов W и C оставались неизменными. Величина нормального напряжения *T* вычислялась через производную полной энергии *E* как функции *z*:

$$T = \frac{dE}{dz} \cdot \frac{1}{S_{XY}},$$

где S_{XY} – площадь поперечного сечения системы в плоскости XY. Предел прочности определялся как величина напряжения, после которой начинается разрушение материала.

Для изучения прочности прослойки на сдвиг один из кристаллитов карбида вольфрама смещался пошагово по оси *X*. В этом случае тангенциальное напряжение *F* вычислялось по формуле

$$F = \frac{dE}{dx} \cdot \frac{1}{S_{XY}},$$

а модуль сдвига G находился на начальном (линейном) участке кривой по формуле

$$G = \frac{F}{tg\theta}, tg\theta = \frac{\Delta x}{h},$$

где θ - угол сдвига, Δx – полная величина сдвига, h – толщина слоя кобальта.

Для сравнения были исследованы на растяжение и на сдвиг прослойки кобальта, также состоящие из шести атомных слоев, но со структурой полностью отвечающей равновесной структуре ГЦК решетки кристалла кобальта. Роль граничных кристаллитов при этом играли также кристаллиты кобальта.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Зависимость напряжения от относительного растяжения прослойки кобальта вдоль оси *Z* (т.е. вдоль нормали к границе с карбидом вольфрама) представлена на рис. 2 в сравнении с аналогичной зависимостью для монокристаллического слоя кобальта.

Рис. 2. Зависимость напряжения от растяжения прослойки кобальта. 1) монокристаллический кобальт со структурой ГЦК, 2) бездефектный кобальт, эпитаксиальный по отношении к карбиду вольфрама, 3) – кобальт, эпитаксиальный по отношении к карбиду вольфрама, но содержащий дислокации несоответствия.

Кривая 1 на рис. 2 соответствует растяжению прослойки со структурой, соответствующей монокристаллическому кобальту. Прочность на разрыв у такой прослойки составляет 18 ГПа, что во много раз превосходит максимально известные экспериментальные величины для массивного кобальта (800- 875 ГПа) [19]

Такое большое отличие прочности идеального монокристалла и реального материала – факт общеизвестный и объясняется влиянием дислокаций, границ зерен иных дефектов. Разрывная прочность прослойки кобальта, И эпитаксиальной по отношении к карбиду вольфрама, оказывается еще больше и составляет 40 ГПа. Если же в эпитаксиальной прослойке имеются дислокации, которые моделируются введением в центральную часть кобальтовой прослойки двух дополнительных атомных плоскостей, это, как и следует ожидать, приводит к снижению предела прочности - почти в два раза (кривая 3). Можно полагать, что с уменьшением средней толщины прослоек кобальта до наномасштабных размеров, в твердом сплаве возрастает доля областей, в которых кобальт упорядочивается эпитаксиально по отношении к поверхностям кристаллитов карбида вольфрама и не образует при этом ни дислокаций, ни зерен, что должно приводить к возрастанию прочности.

Мы исследовали также реакцию прослойки кобальта на сдвиговые нагрузки (рис.3).

Рис. 3. Зависимость сдвигового напряжения в прослойках кобальта от тангенса угла сдвига. 1 – монокристаллическая прослойка, 2 – бездефектная прослойка со структурой, эпитаксиальной по отношении к карбиду вольфрама, 3 - прослойка со структурой, эпитаксиальной по отношении к карбиду вольфрама, но содержащая дислокацию несоответствия.

Из рис. З следует, что монокристаллическая нанопрослойка кобальта характеризуется расчетной величиной модуля сдвига равной 136 ГПа, что существенно превышает известную величину для массивного кобальта (47—90 ГПа) [20]. Предельное напряжение сдвига равно при этом 30 ГПа. В то же время эпитаксиальная прослойка, в которой решетка кобальта растянута в латеральных направлениях на 20 процентов, обладает пониженной сопротивляемость сдвигу: модуль сдвига равен 22 ГПа, а предельное напряжение – 10 ГПа. Введение в такую прослойку дислокации еще более ухудшает сдвиговые характеристики: вначале модуль сдвига остается практически без изменений, затем возрастает, но очень быстро (при угле сдвига равном 7.5 град и напряжении около 6 ГПа) прослойка перестает сопротивляться, т.е. происходит ее сдвиговое разрушение. В отсутствии дислокаций критический угол разрушения примерно втрое выше.

4. ЗАКЛЮЧЕНИЕ

Квантово-механические расчеты показывают, что возникновение эпитаксиальной упорядоченности кобальта по отношении к кристаллитам карбида вольфрама неоднозначно влияет на механические свойства кобальтовых прослоек. С одной стороны, вдвое увеличивается прочность на разрыв, но с другой стороны, в шесть раз уменьшается модуль сдвига. Что касается такой важной характеристики как твердость, то прямое ее вычисление, сопоставимое с техническими экспериментами, в рамках данной работы невозможно. Однако из сопоставления кривых, приведенных на рис.2, можно заключить, что твердость прослоек с эпитаксиальной бездефектной структурой должна в 3-4 раза превосходить твердость обычного кристаллического кобальта.

Литература

1. Schubert W.D., Bock A., Lux B. Int. Journal of Refractory Metals & Hard Materials. 1995. V. 13. P. 281-286.

2. Jia K., Fischer T.E., Gallois B. Nanostruct. Mater. 1998. V. 10. P. 875-891.

3. Kim B.K., Ha G.H., Lee D.W., Lee G.G., Ahn I.S. Advanced Performance Materials. 1998. V. 5. P. 341-352.

4. Ferreira J.A.M., Pina Amaral M.A., Antunes F.V., Costa J.D.M. Int. Journal of Refractory Metals & Hard Materials. 2009. V. 27. P. 1–8.

5. Заводинский В.Г. Российские нанотехнологии. 2010. Т. 5. № 11-12. С. 87-91.

6. V.G. Zavodinsky Int. Journal of Refractory Metals and Hard Materials, doi: 10.1016/j.ijrmhm.2010.10.005.

7. Beckstedte M., Kley A., Neugebauer J., Scheffler M. Comp. Phys. Commun. 1997. V. 107. P. 187-205.

8. Заводинский В.Г, Чибисов А.Н., Гниденко А. А., Алейникова М.А. Механика Композ. Матер. Констр. 2005, Т. 11(3), С. 337-346.

9. Hohenberg H., Kohn W. Phys. Rev. 1964. V. 136. P. B864-B871.

10. Kohn W., Sham J. L. Phys. Rev. 1965. V. 140. P. A1133-A1138.

11. M. L. Cohen and V. Heine. Pseudopotential theory of cohesion and structure. In *Solid State Physics*, V. 24, P. 250. Academic Press, New York, 1970.

12. Fuchs M., Scheffler M. Comp. Phys. Commun. 1999. V. 119. P. 67-165.

13. Troullier N., Martins J.L. Phys. Rev. B. 1991. V. 43. P. 1993-2006.

14. Hamann D.R. Phys. Rev. B. 1989. V. 40. P. 2980-2991.

15. Perdew J.P., Wang Y., Phys. Rev. B. 1986. V. 33. P. 8800-8802.

16. Murnagham F.D. Proc. Nattl. Acad. Sci USA. 1944. V. 30. P. 244-247.

17. Chadi D. J., Cohen M. L. Phys. Rev. B 1973, V. 8, P. 5747-5753.

18. Monkhorst H.J., Pack J.D. Phys. Rev. B 1975, V. 13, P. 5188-5192.

19. Betteridge W. Progress in Materials Science, 1980, V. 24, P. 51-142.

20. Свойства элементов. Справочник. Дриц М.Е. (ред). Издательство: Металлургия, 1985.

Автор:

Заводинский Виктор Григорьевич, доктор физ.-мат. наук, директор Института материаловедения Хабаровского научного центра Дальневосточного отделения Российской академии наук, Хабаровск, 680042, ул. Тихоокеанская 153, тел. (4212)226056, <u>vzavod@mail.ru</u>

Дом. адрес: Хабаровск, 680000, ул. Московская 9, кВ. 107.

Я, нижеподписавшийся автор Заводинский В.Г. передаю редколлегии и учредителям журнала "Механика композиционных материалов и конструкций" право опубликовать статью "МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАНОРАЗМЕРНЫХ ПРОСЛОЕК КОБАЛЬТА В ТВЕРДЫХ СПЛАВАХ WC/Co" на русском и английском языках, в том числе и в зарубежном издательстве.

Я подтверждаю, что данная публикация не нарушает авторского права других лиц или организаций.

Дата: